CD19 targeted 2nd generation chimeric antigen receptor T (CAR T) cells have been successful against relapsed and/or refractory B cell malignancies. The pending FDA-approval of 2 separate CD19 targeted CAR T products highlight the need to understand the biology behind this novel therapy. CAR design includes a single-chain variable fragment, which encodes antigen-binding, fused to a transmembrane domain, co-stimulatory domain, and CD3ζ activation domain. The two CARs likely to be approved as standard of care include a 41BB or CD28 co-stimulatory domain. CD28 is a critical co-stimulatory receptor required for full T cell activation and persistence, while 4-1BB is a member of the tumor necrosis factor receptor family and also a critical T cell co-stimulatory factor. Early evaluation of the co-stimulatory domains role in CAR design confirmed that they are required to enhance T cell function, but lacked insight regarding their mechanism for this enhancement. Furthermore, clinical outcomes suggest that the co-stimulatory domains in CARs support different T cell functions in patients. For example, while overall outcomes are similar between 41BB (19BBz) and CD28-containing CARs (1928z), 19BBz CAR T cells can persist for years in patients, but functional 1928z CAR T cells rarely persist longer than a month. Recent studies are providing insight to these differences and have demonstrated that 4-1BB-containing CARs reduce T cell exhaustion, enhance persistence, and increase central memory differentiation and mitochondrial biogenesis, while CD28-containing CARs support robust T cell activation and exhaustion, and are associated with effector-like differentiation. However, these studies have been performed mostly in vitro or in immune deficient mice, which limits their ability to model complex immune biology. Therefore, we evaluated murine CD19-targeting CARs with a 4-1BB (m19BBz) or CD28- (m1928z) co-stimulatory domain in relevant animal models of immunity.

We directly compared m19BBz and m1928z CAR T cell immune phenotype, cytotoxicity, cytokine production, gene expression, intracellular signaling, and in vivo persistence, expansion, and B cell acute lymphoblastic leukemia (B-ALL) eradication. In vitro assays revealed that m1928z CAR T cells had enhanced cytotoxicity and cytokine production compared to m19BBz CAR T cells. Also, evaluation of m1928z and m19BBz CAR T cells displayed similar immune phenotypes, but markedly different gene expression with m1928z CAR T cells upregulating genes related to effector function and exhaustion, while m19BBz CAR upregulated genes critical for NFkB regulation, T cell quiescence and memory. In vivo, both m1928z and m19BBz CAR T cells supported equivalent protection against B-ALL. Similar to patients, in our mouse models there are functional differences between the mouse CD19-targeted CAR T cells. At 1 week post-infusion m19BBz CAR T cells are present in the blood of mice at significantly greater levels than m1928z CAR T cells. Furthermore, m19BBz CAR T cells enhance proliferation and/or anti-apoptosis protein expression to enhance B cell killing, which is evidenced by our observation that irradiation significantly weakens the in vivo efficacy of m19BBz but not m1928z CAR T cells. Our results suggest that B cell killing by m1928z CAR T cells is not impacted by irradiation because of their efficacious cytotoxicity of B cells. In contrast, m19BBz CAR T cells have enhanced viability and anti-apoptosis protein expression, which allows them to compensate for reduced effector function. We investigated potential mechanisms for the enhanced viability and anti-apoptosis of m19BBz CAR T cells and determined that NFkB signaling is upregulated much greater by m19BBz than m1928z. We have observed this difference in both a reporter cell line and primary mouse T cells. We are now dissecting what cellular components mediate increased NFkB signaling by the m19BBz CAR. Our animal models recapitulate equivalent anti-leukemia efficacy of CD19-targeted CAR T cells regardless of co-stimulatory domain, but underscore that anti-leukemia killing is mediated by different methods depending on the co-stimulatory domain. Our work sheds light on how 4-1BB mechanistically regulates and impacts CAR T function and has implications for future CAR design and evaluation.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution